Extreme events: flooding

GG22A: GEOSPHERE & HYDROSPHERE Hydrology

Types of flood risk

• Main types of climatically influenced flooding:

- 1. Flash (rapid-onset)
- 2. Lowland (slow-rise)
- 3. Coastal
 - (not covered here)

• But! Causal factors are not just climatic...

What is flash flooding?

- Rapid localised flooding of low lying areas
- Usually along streams but not always
- Caused by the sudden accumulation of water, usually from intense rainfall (often from thunderstorm events)
 - Can also from sudden release of water from, for example, a breaking dam.

Flash flooding Intense rainfall from convective thunderstorms may only last a few hours... but can result in serious flooding in catchments that are small, steep or highly urbanised

Flash flood characteristics

- Occur suddenly little time for warning
- Fast-moving and generally violent threat to life and severe damage to infrastructure
- Generally small in scale regarding area of impact
- Frequently associated with other events riverine floods and mudslides
- They are rare (?)

Causes of flash flooding

Non-climatic

- Geomorphology:
- steepness of slope
- upstream contributing area
- relief is area confined or a wide floodplain? Narrow valleys more likely to experience serious flash flooding.

Causes of flash flooding

- Non-climatic
 - Permeability of land surface
 - If water cannot be absorbed into the ground, it will quickly be moved downslope
 - Caused by:
 - Geology & soil type: e.g. arid hard pan soils
 - Saturation of ground from previous rainfall
 - Land cover e.g. concrete. Urban areas are susceptible to flash flooding
 - Urbanisation: urban drainage

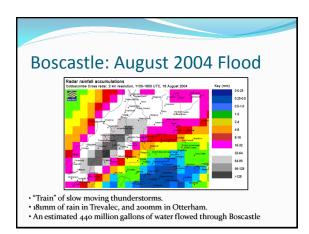
Causes of flash flooding

- Non-climatic
 - Reduced or insufficient drainage system efficiency
 - Volume of water may be too much for the drainage network to carry, causing flooding
 - Capacity of network may not be sufficient: e.g. British Victorian sewer systems
 - Capacity of network may be reduced: e.g. blockages cause by debris.

Causes of flash flooding

Climatic

- Intensive rainfall, often from one or multiple thunderstorms in the same place
- Can happen when multiple storms move along a stationary front



Flash flooding in Boscastle, UK

- River Jordan flows into R. Valency in center of Boscastle. Small catchment : 7.7 square
- miles •
- But Steeply sloping rises over 300 meters in 6km. Thin soils
- Impermeable Bedrock: high amounts of runoff.
- High sediment supply: reduces channel capacity . Human Impact
- Arched bridges over river collect debris
- Sewer pipe reduces channel capacity

Flood risk in Boscastle

- Risk to People: Short return period, deep, fast flowing and rapidly rising
- · Risk to Property: Structural damage, and deposition of silt
- Risk of Blight: Tourists stay away
- Risk to the Environment: Damage to Conservation area and historic buildings.

	1 in 50 (2%) chance	1 in 75 (1.33%) chance	1 in 100 (1%) chance	1 in 400 (0.25%) chance
Commercial	21 properties	24 properties	26 properties	28 properties
Residential	14 properties	15 properties	17 properties	19 properties
Total	35 properties	39 properties	43 properties	47 properties
Additional residences with no access	22			20
Infrastructure	Key coastal link road (B3263)			

- Could the 2004 flood have been prevented? No: To much rainfall in too short a time.
- Environmental consultants H.R. Wallingford concluded that land use changes had little impact on the severity of flooding
- However, despite the immense difficulty of preventing a similar flood in the future extensive flood defences have been outlined.
- Most likely to protect against 50 year return period floods.
 - Proposals include: Widening Channel
 - Lowering the river bed

 - Flood defence wall Raising the car park
 - Removing sewer Creating braided channel section
- Video: Boscastle flooding, 21 June 2007

Climate and flash flooding

- Many factors causing flash flooding are not climate driven
- Main climate factor in the cause of flash flooding is intensive rainfall
 - Intense rainfall on its own doesn't cause flash flooding other causal factors are necessary
 - An increase in frequency of intense rainfall events would increase likelihood of flash flooding

Climate change and flash flooding

• UKCIP02 study:

- Summer rainfall will decrease (Hulme et al. 2002)
- But thunderstorms are likely to become more frequent and produce heavier and more intense rainfall (Dale 2005)
- General trend to drier summer conditions in Europe
 - But episodes of severe flooding may become more frequent due to short (1-5 days) episodes of heavy precipitation.

2. Lowland river flooding

- Lowland river flooding
 - How is this different?
 - Climatic factors
- Assessing flood risk
 - General overview

Tewkesbury flooding video, July

Climate and river flooding

- Warmer climate → more atmospheric water
 possibly both intensifies low-pressure systems and
 - makes more water available for precipitation (see Frei et al. 1998)
- Climate model integrations:
 - increases in both the frequency and intensity of heavy rainfall in high latitudes of the northern hemisphere (see Palmer and Räisänen 2002, Ekström et al. 2005)

Climate and river flooding

• Increases in *average amount* and *variability* of precipitation predicted for N European regions

higher flood risks

(see Arnell et al. 2000)

Climate and river flooding

- Incidence of "great floods" (floods that exceed 100-year levels in basins larger than 200,000km²) increased in the 20th century.
- Statistically significant positive trend, consistent with results from climate models.

(see Milly et al. 2002)

Climate and river flooding

- UKCIPo2 predicts that UK winter rainfall will increase (see Hulme et al. 2002)
 - probability of the total winter precipitation exceeding two standard deviations above normal levels will increase by a factor of five over the next 100 years.

(see Palmer and Räisänen 2002)

Climate and river flooding

- Research by Lehner et al. (2006):
 - global integrated water model (WaterGAP)
 - driven by climate change projections (temperature and precipitation) from GCMs
 - set of scenario assumptions for changes in human water use.
 - "Business as usual approach" for economic growth and activity
 - Imply an average annual increase of $\mathrm{CO}_{\mathtt{a}}$ emissions of 1% per year.

Climate and river flooding

- As early as 2020, across large parts of the northern Europe, the north of the UK and the Iberian peninsular:
 - Floods with a return period of 100-years today can be expected to occur every 40-years,
 - The 100-year event will be around 10% more severe.
 - Lehner et al. (2006)

Climate and river flooding

- Research by Hall et al. (2005):
 - Assessment of current/ future flood risk in England and Wales:
 - current expected annual economic flood damage to residential and commercial property to be US\$550M (uncertainty range: US\$330M - \$L15Bn).
 - high emission and relatively loose regulation scenarios, this may be expected to rise to ~US\$8Bn by 2050 and US\$11.3Bn by 2080.
 - global sustainability scenario, annual economic damage is predicted at US\$2.7Bn by 2080.

Climate and river flooding

Many extreme floods are caused by intense precipitation in mountainous areas, or a combination of precipitation and snowmelt

- Research by Kim, 2005:
 - Western US:
 - Increased winter precipitation
 - Increase in the rainfall-portion of precipitation (at the expense of snowfall) =
 - \rightarrow large increases in high-runoff events in river basins already prone to winter flooding
- Higher average temperatures = higher freezing levels = change in the normal type of precipitation from snow to rainfall, and an increase in winter snowmelt

Climate and river flooding

- Many extreme floods are caused by intense precipitation in mountainous areas, or a combination of precipitation and snowmelt
 - Research by Kaczmarek, 2003:
 - Study for Poland, found that the risk of snowmelt induced flooding is linked to the North Atlantic Oscillation (NAO):
 - Increasing NAO leads to an increase in surface air temperature and a temporal redistribution of winter and spring runoff.
 - \rightarrow Winter runoff increases, increasing in flood risk
 - → Spring snowmelt decreases, reducing flood risk.

Flood risk: defining probability

- What is the probability of a flood or other natural hazard occurring?
- Often defined using past observations
 - Are the occurrence of past events a good indicator of future probability under climate change?
- Change in probability may be cyclical in line with natural climate variability e.g. ENSO

Consequences of climate change

- As well as changing *averages*, climate change is likely to affect *extremes* of distributions: but quantifying extremes is very difficult.
- Possible effect of climate change on events:
 Increased *frequency* and *magnitude* (return periods decreasing)
 - Therefore, increased probability and consequences
- Changes the risk and may increase vulnerability (risk management strategy no longer sufficient).